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Setting C-functions Newton-type methods and beyond References

Complementarity Problems (CPs)

General form: [FP03; AB08; CPS09]

Let F ,G : Rn 7→ Rn be smooth,

find x ∈ Rn s.t. F (x) ⩾ 0, G(x) ⩾ 0, F (x)TG(x) = 0
⇐⇒ 0 ⩽ F (x) ⊥ G(x) ⩾ 0.

(1)

NCP(F ) 0 ⩽ x ⊥ F (x) ⩾ 0
LCP(M, q) 0 ⩽ x ⊥ (Mx + q) ⩾ 0

At a solution x , Fi(x) = 0 or Gi(x) = 0 ∀ i ∈ [1 : n]: 2n choices;
combinatorial aspect. LCPs are NP-hard [Chu89; Koj+91].
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Relevance of CPs

Contact problems, threshold effects [HP90; FP97]

r : reaction, z : height

∀ point y ,


r(y) ⩾ 0,
z(y) ⩾ 0,
r(y)z(y) = 0.

Constrained optimization:

min f (x) s.t. g(x) ⩽ 0,

KKT
{

∇f (x) + ∇g(x)λ = 0,
0 ⩽ λ ⊥ (−g(x)) ⩾ 0.

VIs, generalized equations, MPECs
MPCCs, [FP03; Rob80; HK09]. . .
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Principle and examples

Possible reformulation techniques

C-function:

φ : R2 → R, s.t. φ(a, b) = 0 ⇐⇒ a ⩾ 0, b ⩾ 0, ab = 0

0 ⩽ F (x) ⊥ G(x) ⩾ 0 ⇔ Hφ(x) := (φ(Fi(x),Gi(x)))i∈[1:n] = 0

⇔ min θ := 1
2 ||Hφ(x)||2

φFB(a, b) :=
√

a2 + b2 − a − b [Fis92]
φmin(a, b) := min(a, b), H := Hmin [Pan90; Pan91; Qi93]
[Fuk92; MS93; LT97; KYF97; Alc+20], surveys [FJ00; Gal12].
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Principle and examples

Illustration

Level sets of the C-function φFB, nondifferentiable only at the origin.
Level sets of the C-function φmin, nondifferentiable at the dashed line.
Red: 0-levelset, corresponding to solutions (a ⩾ 0, b ⩾ 0, ab = 0).
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Principle and examples

Systems of (nonsmooth) equations

Smooth case

Iteration

xk+1 = xk − H ′(xk)−1H(xk)
( = xk + dk)

x0 near x∗, H ∈ C1,1,
H ′(x∗) nonsingular

⇒ convergence

Can cycle if H nonsmooth [Kum88]

Semismooth Newton iteration

xk+1 = xk − J−1
k H(xk)

any Jk ∈ ∂B|CH(xk)

x0 near x∗, H semismooth,
all J ∈ ∂B|CH(x∗) nonsingular

⇒ convergence
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Principle and examples

Generalizing derivatives

Two main differentials: [Cla90]

∂BH(x) := {J ∈ Rn×n : ∃ (xk)k → x , xk ∈
domain
DH ,H ′(xk) → J},

∂CH(x) := conv(∂BH(x)).

Bouligand, C larke (= generalizes the convex subdifferential)

1D example where ∂BH(x) = {−1,+1/2}, ∂C H(x) = [−1,+1/2] ∋ 0!
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Beyond the local method

Questions to clarify

1) x0 near x∗? → min θ := 1
2 ||Hφ(x)||2

Case of FB (and many others)
θFB := 1

2 ||HFB||2 = 1
2
∑n

i=1 φ
2
FB(. . .i) is smooth.

−∇θFB is a descent direction, but slow: last resort [Mun+01].

2) Easy to get one J (suffices), but a good one?

Case of min
∂BH(x) smaller, finite: less risk of singularity [IS14, p.151].
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Beyond the local method

Globalization hindered by nonsmoothness

Example illustrated with the minimum C-function.

(a) Level sets of θ, nonsmooth at the
dashed lines; the arrows are directions
related to the J ’s.

(b) Depending on the J ’s, increase /
decrease of θ (already observed in
[Ben12]).
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Beyond the local method

Trivia

Both have pros & cons: combine/adapt them
[DFK96; DFK00; PGP03; MS93; SQ99; CCK00; KK98; FP03].

One interesting detour: [DGP25a]
for LCPs / affine F ,G : ∂BH(x) ⇔ hyperplane arrangement.

Combinatorial geometry, since 19th century [Ste26; Rob87; Sch50].

Identify the areas / intersections, #P-hard.

↔ matroids, zonotopes, posets, graphs. . .

Discussions in [DGP25b].
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Newton-min

Recall of Newton-min (NM)

Problem and Newton-min algorithm ([Pan91; Qi93])

H(x) := min(F (x),G(x)) = 0

take a “good” x0;
x+ = x + d = x − J−1H(x), J ∈ ∂×

B H(x) (*) (or ∂×
C H(x));

requires all J ∈ ∂×
B H(x̄) nonsingular.

∂×
B H(x) := ∂BH1(x) × · · · × ∂BHn(x)

(*) d = −J−1H(x) ⇐⇒ H(x) + Jd = 0
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Newton-min

Details of (*): index sets

(1) Fi(x) < Gi(x), H i(x) = Fi(x), ∂BH i(x) = {F ′
i (x)},

(2) Fi(x) > Gi(x), H i(x) = Gi(x), ∂BH i(x) = {G ′
i (x)},

(3) Fi(x) = Gi(x), = H i(x), ∂BH i(x) = {F ′
i (x),G ′

i (x)}.

(1) i ∈ F(x) J i ,: = F ′
i (x)

(2) i ∈ G(x) J i ,: = G ′
i (x)

(3) i ∈ E(x) J i ,: ∈ {F ′
i (x),G ′

i (x)}

(3) nonsmooth part: Fi or Gi? Representation of the index sets.
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Newton-min

Newton-min (NM) system

For i ∈ E(x), linearize Fi or Gi?
E(x) = EF (x) ∪ EG(x) ⇔ one J :

Fi(x) + F ′
i (x)d = 0 i ∈ F(x) ∪ EF (x)

Gi(x) + G ′
i (x)d = 0 i ∈ G(x) ∪ EG(x)

NM index sets.

In general, which partition?
→ More elaborate system to decrease θ.
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Polyhedral Newton-Min (PNM)

Starting point of PNM [DFG25]

E0+(x) := {i : Fi(x) = Gi(x) ⩾ 0}

=: E0+
F (x) ∪ E0+

G (x)

E−(x) := {i : Fi(x) = Gi(x) < 0}

The “positive”/“negative” kinks.

Type of PNM partitioning.

E0+(x) violates complementarity, E−(x) also violates ⩾ 0.
(See also [PG93; QS94; HPR92].)
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Polyhedral Newton-Min (PNM)

The PNM method (main elements)

For E0+
F (x) and E0+

G (x), one equality, for E−(x), 2 inequalities.

polyhedron in d :


Fi + F ′

i d = 0 i ∈ F(x) ∪ E0+
F (x),

Gi + G ′
i d = 0 i ∈ G(x) ∪ E0+

G (x),
Fi + F ′

i d ⩾ 0 i ∈ E−(x),
Gi + G ′

i d ⩾ 0 i ∈ E−(x).

such d ⇒ θ′(x ; d) ⩽ −2θ(x) < 0, θ decreases along d .

PNM regularity condition
Around x̄ , ∀ E0+

F (x) ∪ E0+
G (x) with x near x̄ , ∃ d(E0+

F (x), E0+
G (x)).
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Least-squares over regularity

What if the polyhedron is empty?

The problem is:
nonsmooth,
nonconvex,
without (major) assumption.

Approach based on the structure of min.
Combinatorial nature, but no hypothesis on F and G .

Baptiste Plaquevent-Jourdain Complementarity Problems via geometry - PGMO Days’25 19/11/2025 16 / 23



Setting C-functions Newton-type methods and beyond References

Least-squares over regularity

What if the polyhedron is empty?

The problem is:
nonsmooth,
nonconvex,
without (major) assumption.

Approach based on the structure of min.
Combinatorial nature, but no hypothesis on F and G .

Baptiste Plaquevent-Jourdain Complementarity Problems via geometry - PGMO Days’25 19/11/2025 16 / 23



Setting C-functions Newton-type methods and beyond References

Least-squares over regularity

From the PNM system

Least-squares to find “a best possible d”, min ||(2)||2/2:

Fi + F ′
i d = 0 i ∈ F(x)

Gi + G ′
i d = 0 i ∈ G(x)

Fi + F ′
i d = 0 i ∈ E0+

F (x) γi = 1, γ i = 0
Gi + G ′

i d = 0 i ∈ E0+
G (x) γi = 0, γ i = 1

Fi + F ′
i d ⩾ 0 i ∈ E−(x) × γi

Gi + G ′
i d ⩾ 0 i ∈ E−(x) × γ i

(2)

E−(x) appears twice: convex weights to balance,
γ− = (γi)i ∈ [0, 1]E−(x) and γ i := 1 − γi .

Same for E0+(x), γ+ = (γi)i ∈ {0, 1}E0+(x), γ i := 1 − γi .
γ+ ⇔ E0+

F (x) ∪ E0+
G (x)
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Setting C-functions Newton-type methods and beyond References

Least-squares over regularity

Interest of the model and weights

min
d∈Rn

ψx ,γ+,γ−(d) := ||(2)||2/2 with γ+, γ− (3)

ψx ,γ+,γ− convex, smooth, piecewise quadratic model of θ at x
ψx ,γ+,γ− has a minimizer d regardless of γ+

Let g(γ+, γ−) := ∇ψx ,γ+,γ−(d = 0), θ′(x ; −g(γ+, γ−)) ⩽ 0?

Lemma: choosing a good model
Let γ+, ∃ γ−(γ+) such that:

θ′(x ; −g(γ+, γ−(γ+))) ⩽ −||g(γ+, γ−(γ+))||2 ⩽ 0.

if g(γ+, γ−(γ+)) = 0, γ+ irrelevant;
wrong γ− can make θ′(x ; −g(γ+, γ−)) ⩾ 0.
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Least-squares over regularity

Illustration of the lemma

All partitions ({0, 1}2) increase θ. Correct weights yield descent.
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Setting C-functions Newton-type methods and beyond References

Complexity

Stationarity detection with the weights

We say x is strongly (Dini) stationary if ∀ d ∈ Rn, θ′(x ; d) ⩾ 0:
1st-order order local optimality.

Stationarity with the γ’s:

x strongly stationary ⇔ ∀ γ+ ∈ [0, 1]E0+(x), g(γ+, γ−(γ+)) = 0 (∗)

∃ a descent direction ⇔ one good γ+ with g(γ+, γ−(γ+)) ̸= 0.
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Complexity

Complexity estimate via geometry

M ∈ Rn×q, Z (M) := M[0,+1]q = {Mη : 0q ⩽ η ⩽ +1q} ⊆ Rn.
Centrally symmetric polytope, matrix × hypercube.
Combinatorics, control. . . [McM71; Zie07; Alt22; ST19]

(∗) is equivalent to verifying an inclusion between two zonotopes,
which is co-NP-complete (in general) [KA21].

γ+ s.t. g(γ+, γ−(γ+)) ̸= 0, combinatorial in |E0+(x)|, |E−(x)|
γ−(γ+) is a projection on a zonotope
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Complexity

Into perspective

PNM: assumption to make every γ+ ✓.
Weights: γ+ bad if g(γ+, γ−(γ+)) = 0.
Good γ+ ⇒ g(γ+, γ−(γ+)) ̸= 0: descent property.
Optimal γ+ ⇒ g(γ+, γ−(γ+)) ∈ ∂Cθ(x) \ {0}.
If a method has: g → 0, x → x∗:
by ∂C , 0 ∈ ∂Cθ(x∗) (weak stationarity).

Paradigm (see [BH20; Car+20; Car+21; JLZ22])
Knowing if x is strongly stationary is co-NP-complete,

obtaining one is much more difficult.
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Conclusion

Main take-aways
H induces a geometric / combinatorial structure (zonotopes)
explicitation of some results/properties,
link between combinatorics and regularity assumptions.

Natural pursuits:
numerical implementation;
detailed convergence theorem;

Thank you for your attention! Any question?
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Smooth C-functions?

Yes! Mangasarian’s framework [Man76]
Family of C-functions and easy condition to get smooth ones:

ρ : R → R, ρ(0) = 0, ρ ↗,
ρ(|Fi(x) − Gi(x)|) − ρ(Fi(x)) − ρ(Gi(x)) = 0 ∀ i ∈ [1 : n]. (4)

But if x̄ is not strictly complementary, then ∇Hφ(x̄) is singular: no
fast local convergence [FP03, prop. 9.1.1, pp. 794-795].

Algorithm with nondegeneracy assumption in [Sub93].
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Summary of some basic methods

∂? reg(ularity) at x̄ |∂?| differentiable?
NM ∂×

B H b-reg, 2p J piecewise

SNM
φFB

∂
(×)
C HFB CD(FB)-reg, © (“ball”) SC1

∂
(×)
B HFB BD(FB)-reg, © (“sphere”)

min ∂×
C H CD(min)-reg, © (“cube”) piecewise

∂BH smaller b-reg, ⩽ 2p J piecewise

Table: Properties of some nonsmooth methods. SNM: Semismooth
Newton Method; NM: Newton-Min; © : continuum

(∂×
C H(x) :=

n∏
i=1

∂CHi(x))
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PNM computations

θ′(x ; d) =
∑

i∈F(x)
Fi(x)F ′

i (x)d +
∑

i∈G(x)
Gi(x)G ′

i (x)d

+
∑

i∈E(x)
H i(x) min(F ′

i (x)d ,G ′
i (x)d)

[d s.t. . . . ] = − 2θ(x) [smooth] [↓ nonsmooth ↓]

+
∑

i∈E0+(x)

⩾0︷ ︸︸ ︷
H i(x)

one is 0, so min ⩽ 0︷ ︸︸ ︷
min(Fi(x) + F ′

i (x)d ,Gi(x) + G ′
i (x)d)

+
∑

i∈E−(x)

<0︷ ︸︸ ︷
H i(x)

both are ⩾ 0, so min ⩾ 0︷ ︸︸ ︷
min(Fi(x) + F ′

i (x)d ,Gi(x) + G ′
i (x)d)

= − 2θ(x) − · · · − · · · ⩽ −2θ(x) (< 0)
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Explicit computations

Let Γ+ = Diag(γ+), Γ− = Diag(γ−)

θ′(x ; −g(γ+, γ−)) = −||g(γ+, γ−)||2

0 ⩾

+ HT
E0+(x)[min(−F ′

E0+(x)g(γ+, γ−),−G ′
E0+(x)g(γ+, γ−))

+Γ+F ′
E0+(x)g(γ+, γ−) + Γ+G ′

E0+(x)g(γ+, γ−)]︸ ︷︷ ︸

⩽0

0 ⩽

+ HT
E−(x)[min(−F ′

E−(x)g(γ+, γ−),−G ′
E−(x)g(γ+, γ−))

+Γ−F ′
E−(x)g(γ+, γ−) + Γ−G ′

E−(x)g(γ+, γ−)]︸ ︷︷ ︸

⩽0

min(−a,−b) + γa + γb =
{
γ(b − a) ⩽ 0 if a ⩾ b
γ(a − b) ⩽ 0 if a ⩽ b .
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Computation of the weights

Goal: get a nonzero g

max
γ+∈[0,1]E0+(x)

min
γ−∈[0,1]E−(x)

||g(γ+, γ−)||2/2

where g(γ+, γ−) = g0 + M+γ+ + M−γ−.

min: γ−(γ+) to descend; max: distance (convex) on hypercube:
; {0, 1}E0+(x) (partitions); inclusion of polytopes: vertices suffice.
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Example of weights computation – 1

M =
(

1/2 1/2
−5 1

)
, q =

(
0

−1/10

)
, x =

(
−1/50
−1/50

)

Here, F(x) = ∅ = G(x), E(x) = {1, 2}. After computations. . .
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Example of weights computation – 2

[up to factor 1/200] The point to project is (7; −5)(= g1(x)).

The zonotope to project on is
[

1 10
−1 0

]
× [−1,+1]2

The projection is (7; −1) = 4/5 × (11; −1) + 1/5 × (−9; −1), and
also g(1, 4/5) = 4/5g(1, 1) + 1/5g(1, 0)
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Some precisions for LCPs (1)

0 ⩽ F (x) = x ⊥ Mx + q = G(x) ⩾ 0
A = F(x), E = E(x), I = G(x)

CND

{
MI,I nonsingular and
ME ,E − ME ,IM−1

I,I MI,E ∈ ND

Weighted framework for LCPs with CND
The following properties are equivalent:
1) x is a solution,
2) for any (γ+, γ−), g(γ+, γ−) = 0,
3) for some (γ+, γ−) ∈ {0, 1}E(x), g(γ+, γ−) = 0.
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Some precisions for LCPs (2)

CP

{
MI,I nonsingular and
ME ,E − ME ,IM−1

I,I MI,E ∈ P

Weighted framework for LCPs with CP
The following properties are equivalent:
1) x is a solution,
2) for any (γ+, γ−), g(γ+, γ−) = 0,
3) for some (γ+, γ−), g(γ+, γ−) = 0.

For M a P-matrix, CND and CP ✓, solution ⇔ stationary,
conditions with only one (γ+, γ−),
a priori, still need to γ−(γ+),
outside of solutions ¬ 1), any γ+ suffices ¬ 2)
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Algorithm properties

Sufficient decrease
1) dk(λ)/||dk(λ)|| →

λ→+∞
−S−1

k gk/||S−1
k gk ||

2) for λ large enough, a descent formula holds

Convergence
Let (xk , λk , Sk) be a sequence generated by algorithm ??.
1) The sequence (θ(xk))k decreases thus converges.
2) If (F ′(xk),G ′(xk), λkSk)k∈K for a subsequence K is bounded,

then gk → 0.

In particular, “good behavior” of algorithm is assumed: λk ↛ +∞.
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“Concave kinks” – difficult (bad) limit points.
Consider a simple example with
n = 1, F (x) = x ,
G(x) = 1 + (x − 1)2, x0 = 3/2.

For x ∈ (1, 2), F (x) ̸= G(x).

First iterates, convergence to x = 1. The
black curves are the quadratic models ψx .

Counter-example
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