PhD Pizza Seminar

#1 09/01/2024

Learn

Eat

Make Friends (*)

PhD Pizza Seminar

#1 09/01/2024

presents

Baptiste
Plaquevent-Jourdain
SERENA

As easy as a piece of cake Analytically cutting infinite cakes (yum!)

Baptiste Plaquevent-Jourdain, with Jean-Pierre Dussault, Université de Sherbrooke Jean Charles Gilbert, INRIA Paris

January, 09 2024

References

Outline

- 1 My Personal Recipe
- 2 First part(s of the cake)
- 3 Formalism
- 4 An algorithm
- Some improvements

Plan

•000

My Personal Recipe

- 1 My Personal Recipe
- 2 First part(s of the cake
- Formalism
- 4 An algorithm
- 5 Some improvements

Who are you listening to? (1)

origin

French PhD student from Brittany (sea, crêpes, galettes, Mont Saint-Michel...), then from ENSTA Paris

Who are you listening to? (1)

origin

My Personal Recipe

0000

French PhD student from Brittany (sea, crêpes, galettes, Mont Saint-Michel...), then from ENSTA Paris

Who are you listening to? (1)

origin

My Personal Recipe

0000

French PhD student from Brittany (sea, crêpes, galettes, Mont Saint-Michel...), then from ENSTA Paris

Who are you listening to? (2)

current status

My Personal Recipe

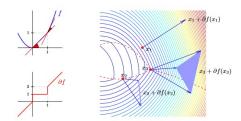
- starting 3rd year, finishing on December, 31st (unless...)
- "cotutelle" France-Québec, here during winter

Who are you listening to? (3)

My (first) subject

My Personal Recipe

Initially doing nonsmooth optimization (theoretically)...



(Fragments d'Optimisation Différentiable - Théorie et Algorithmes)

My (current) subject

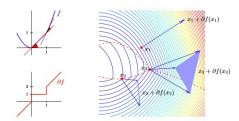
... but today: computational/combinatorial geometry cakes

Who are you listening to? (3)

My (first) subject

My Personal Recipe

Initially doing nonsmooth optimization (theoretically)...



(Fragments d'Optimisation Différentiable - Théorie et Algorithmes)

My (current) subject

... but today: computational/combinatorial geometry cakes!

Plan

- 1 My Personal Recipe
- 2 First part(s of the cake)
- Formalism
- 4 An algorithm
- 5 Some improvements

main rule

cut:= line that completely cut the cake (no stopping in the middle)

second rule

We also assume the cakes are infinite (see later).

main rule

cut:= line that completely cut the cake (no stopping in the middle)

WRONG!

second rule

We also assume the cakes are infinite (see later).

main rule

cut:= line that completely cut the cake (no stopping in the middle)

WRONG!

GOOD!!

second rule

We also assume the cakes are infinite (see later)

main rule

cut:= line that completely cut the cake (no stopping in the middle)

WRONG!

GOOD!!

second rule

We also assume the cakes are infinite (see later).

One cut, 2 slices

One cut, 2 slices

Two cuts, 4 slices

Three cuts, 6 slices

Three cuts, 6 slices

us around the pizzas

p cuts, 2p slices

'Proof': every cut makes 2 previous slices becoming 4 smaller slices $2p \rightarrow (2p-2) + 2*2 = (2p-2) + 4 = 2(p+1)$.

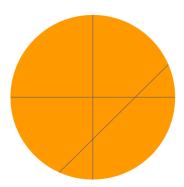
Three cuts, 6 slices

us around the pizzas

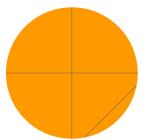
p cuts, 2p slices

'Proof': every cut makes 2 previous slices becoming 4 smaller slices $2p \rightarrow (2p-2) + 2*2 = (2p-2) + 4 = 2(p+1)$.

What about 7 parts?



Asymmetric cuts - they don't all pass by the center/middle



Acually can't (really) have 5 slices: this is cheating. This does not respect the infinite cakes assumption.

But the 7-slices one still works: the 2p formula isn't valid...

Is it possible to get 8 slices in three cuts?

Summary

- symmetric cuts in 2D (all by the center): p cuts $\Rightarrow 2p$ slices
- cutting in a "new dimension" doubles; 2ⁿ slices!
- asymmetric cuts: it's harder

But what about a cake-shaped cake?

So here, p cuts mean p+1 slices... because they're all parallel!

Summary

- symmetric cuts in 2D (all by the center): p cuts $\Rightarrow 2p$ slices
- cutting in a "new dimension" doubles; 2ⁿ slices!
- asymmetric cuts: it's harder

But what about a cake-shaped cake?

So here, p cuts mean p+1 slices... because they're all parallel!

Summary

- symmetric cuts in 2D (all by the center): p cuts $\Rightarrow 2p$ slices
- cutting in a "new dimension" doubles; 2ⁿ slices!
- asymmetric cuts: it's harder

But what about a cake-shaped cake?

So here, p cuts mean p + 1 slices... because they're all parallel!

Parallel sets in each dimension

But parallel set of cuts in each dimension also work:

$$p_1, p_2 \to (p_1 + 1) \times (p_2 + 1)$$

(you can check the slices after the pizzas :3)

Conclusion

So maybe not completely a piece of cake... Depends on: dimension n, number of cuts p, and which cuts.

Observations: new dimension means doubling the cuts, parallel cuts behave weirdly, 5 slices is hard to get...

Question

For a given set of cuts, how many slices do we get?

Conclusion

So maybe not completely a piece of cake... Depends on: dimension n, number of cuts p, and which cuts.

Observations: new dimension means doubling the cuts, parallel cuts behave weirdly, 5 slices is hard to get...

Questior

For a given set of cuts, how many slices do we get?

Conclusion

So maybe not completely a piece of cake... Depends on: dimension n, number of cuts p, and which cuts.

Observations: new dimension means doubling the cuts, parallel cuts behave weirdly, 5 slices is hard to get...

Question

For a given set of cuts, how many slices do we get?

Plan

- 1 My Personal Recipe
- 2 First part(s of the cake
- 3 Formalism
- 4 An algorithm
- 5 Some improvements

Hyperplanes - 1

My Personal Recipe

The cake *n*-dimensional, a 'cut' is an hyperplane. = linear (affine) subspace of dimension n-1 (codimension 1). One hyperplane: $H=v^{\perp}=\{d\in\mathbb{R}^n:v^{\top}d=0\}.$

p cuts: p hyperplanes: $H_i = v_i^{\perp}, \forall i \in [1:p], (v_i)_i = \text{problem}$ data.

halfspaces of an hyperplane

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \qquad H_{i}^{-} = \{ d \in \mathbb{R}^{n} : v_{i}^{T} d < 0 \}$$
$$H_{i}^{+} = \{ d \in \mathbb{R}^{n} : v_{i}^{T} d < 0 \}$$

Hyperplanes - 1

My Personal Recipe

```
The cake n-dimensional, a 'cut' is an hyperplane.
= linear (affine) subspace of dimension n-1 (codimension 1).
One hyperplane: H = v^{\perp} = \{d \in \mathbb{R}^n : v^{\top}d = 0\}.
```

p cuts: p hyperplanes: $H_i = v_i^{\perp}, \forall i \in [1:p], (v_i)_i = \text{problem}$ data.

halfspaces of an hyperplane

$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \qquad H_{i}^{-} = \{ d \in \mathbb{R}^{n} : v_{i}^{T} d < 0 \}$$
$$H_{i}^{+} = \{ d \in \mathbb{R}^{n} : v_{i}^{T} d < 0 \}$$

Hyperplanes - 1

My Personal Recipe

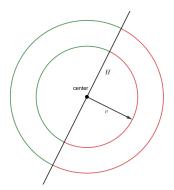
The cake n-dimensional, a 'cut' is an hyperplane.

- = linear (affine) subspace of dimension n-1 (codimension 1). One hyperplane: $H = v^{\perp} = \{d \in \mathbb{R}^n : v^{\top}d = 0\}.$
- p cuts: p hyperplanes: $H_i = v_i^{\perp}, \forall i \in [1:p], (v_i)_i = \text{problem}$ data.

halfspaces of an hyperplane

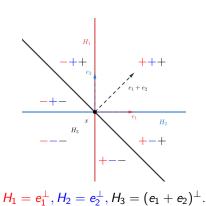
$$\mathbb{R}^{n} = H_{i}^{-} \cup H_{i} \cup H_{i}^{+}, \qquad H_{i}^{-} = \{d \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}} d < 0\} \\ H_{i}^{+} = \{d \in \mathbb{R}^{n} : v_{i}^{\mathsf{T}} d > 0\}$$

Hyperplanes - 2

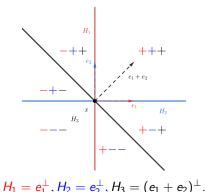


Each cut: a - and a + side: each of the p cuts, intersection of each halfspaces...

Illustration



Illustration



 $\Pi_1 = e_1^-, \Pi_2 = e_2^-, \Pi_3 = (e_1 + e_2)^-$

Actually, # of slices and on which side of each cut it is.

Baptiste Plaquevent-Jourdain

References

Technical formalism

My Personal Recipe

There are p cuts, 2^p potential slices $(\forall i \in [1:p], \{-1,+1\})$ Slice $s = (s_1, \ldots, s_p) \in \{\pm 1\}^p$ exists $\Leftrightarrow H_1^{s_1} \cap H_2^{s_2} \cap \cdots \cap H_p^{s_p} \neq \emptyset$

$$\begin{cases} H_i^+ : v_i^\mathsf{T} d > 0 \Leftrightarrow + v_i^\mathsf{T} d > 0 \\ H_i^- : v_i^\mathsf{T} d < 0 \Leftrightarrow - v_i^\mathsf{T} d > 0 \end{cases} \Leftrightarrow s_i v_i^\mathsf{T} d > 0$$

slice s non-empty $\Leftrightarrow d_s \in \text{slice } s \Leftrightarrow \forall i \in [1:p], s_i(v_i^{\top}d_s) > 0$ Verifying p linear equations = very simple...

But there are 2^p such systems

Thus the interest of designing non-brute force algorithm.

Technical formalism

My Personal Recipe

There are p cuts, 2^p potential slices $(\forall i \in [1:p], \{-1,+1\})$ Slice $s = (s_1, \dots, s_p) \in \{\pm 1\}^p$ exists $\Leftrightarrow H_1^{s_1} \cap H_2^{s_2} \cap \dots \cap H_p^{s_p} \neq \emptyset$

$$\begin{cases} H_i^+ : v_i^\mathsf{T} d > 0 \Leftrightarrow + v_i^\mathsf{T} d > 0 \\ H_i^- : v_i^\mathsf{T} d < 0 \Leftrightarrow - v_i^\mathsf{T} d > 0 \end{cases} \Leftrightarrow \mathbf{s}_i v_i^\mathsf{T} d > 0$$

slice s non-empty $\Leftrightarrow d_s \in \text{slice } s \Leftrightarrow \forall i \in [1:p], s_i(v_i^T d_s) > 0$ Verifying p linear equations = very simple...

But there are 2^p such systems

Thus the interest of designing non-brute force algorithm.

Technical formalism

My Personal Recipe

There are p cuts, 2^p potential slices $(\forall i \in [1:p], \{-1,+1\})$ Slice $s = (s_1, \dots, s_p) \in \{\pm 1\}^p$ exists $\Leftrightarrow H_1^{s_1} \cap H_2^{s_2} \cap \dots \cap H_p^{s_p} \neq \emptyset$

$$\begin{cases}
H_i^+ : v_i^\mathsf{T} d > 0 \Leftrightarrow +v_i^\mathsf{T} d > 0 \\
H_i^- : v_i^\mathsf{T} d < 0 \Leftrightarrow -v_i^\mathsf{T} d > 0
\end{cases} \Leftrightarrow \mathbf{s}_i v_i^\mathsf{T} d > 0$$

slice s non-empty $\Leftrightarrow d_s \in \text{slice } s \Leftrightarrow \forall i \in [1:p], s_i(v_i^T d_s) > 0$ Verifying p linear equations = very simple...

But there are 2^p such systems.

Thus the interest of designing non-brute force algorithm.

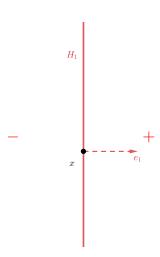
Plan

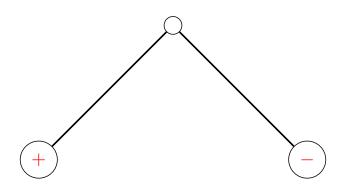
- 1 My Personal Recipe
- 2 First part(s of the cake
- 3 Formalism
- 4 An algorithm
- 5 Some improvements

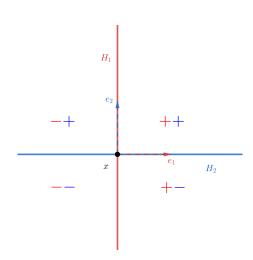
Main reasoning

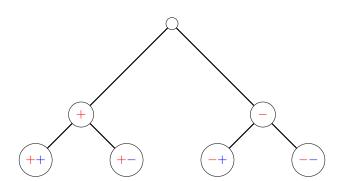
Algorithm from [RČ18]:

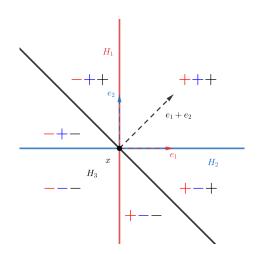
- recursive binary tree that adds hyperplanes one at a time
- each node has descendant(s) (s, +1) and/or (s, -1)
- checking one or two = main computational effort

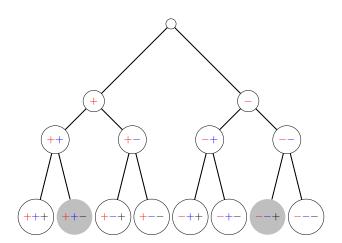












Important property

My Personal Recipe

At level k < p, for a slice $s \in \{\pm 1\}^k$,

$$\forall i \in [1:k], \exists d_{s}, s_{i}v_{i}^{\mathsf{T}}d_{s} > 0 \Rightarrow \begin{cases} \forall i \in [1:k], s_{i}v_{i}^{\mathsf{T}}d > 0 \\ +v_{k+1}^{\mathsf{T}}d > 0 \end{cases} ?$$

$$\forall i \in [1:k], s_{i}v_{i}^{\mathsf{T}}d > 0 \\ -v_{k+1}^{\mathsf{T}}d > 0 \end{cases} ?$$

If $v_{k+1}^{\top}d_s > 0$, (s,+1) verified with the same d_s (if < 0, (s,-1) is). If $v_{k+1}^{\top}d_s \simeq 0$, both for free! (formalized properly)

Important property

My Personal Recipe

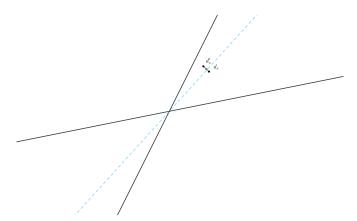
At level k < p, for a slice $s \in \{\pm 1\}^k$,

$$\forall i \in [1:k], \exists d_{s}, s_{i}v_{i}^{\mathsf{T}}d_{s} > 0 \Rightarrow \begin{cases} \forall i \in [1:k], s_{i}v_{i}^{\mathsf{T}}d > 0 \\ +v_{k+1}^{\mathsf{T}}d > 0 \end{cases} ?$$

$$\forall i \in [1:k], s_{i}v_{i}^{\mathsf{T}}d > 0 \\ -v_{k+1}^{\mathsf{T}}d > 0 \end{cases} ?$$

If $v_{k+1}^{\mathsf{T}} d_s > 0$, (s, +1) verified with the same d_s (if < 0, (s, -1) is). If $v_{k+1}^{\mathsf{T}} d_s \simeq 0$, both for free! (formalized properly)

Illustration



The point is "very close" to the new hyperplane, a small simple modification suffices.

Plan

- My Personal Recipe
- 2 First part(s of the cake
- 3 Formalism
- 4 An algorithm
- Some improvements

Reducing the node count

So $|v_{k+1}^{\mathsf{T}} d_s|$ small \Rightarrow probably 2 descendants.

idea: contrapositive

$$|v_{k+1}^\mathsf{T} d_s|$$
 'large' o less chance of both $(s,+1)$ and $(s,-1)$.

Only a heuristic, but reasonably efficient. Also, this order change is local - for each s it can change.

Reducing the node count

So $|v_{k+1}^{\mathsf{T}} d_s|$ small \Rightarrow probably 2 descendants.

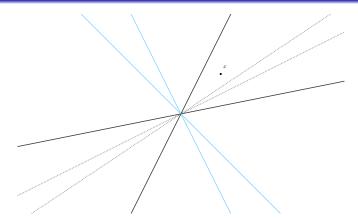
idea: contrapositive

$$|v_{k+1}^{\mathsf{T}} d_s|$$
 'large' \to less chance of both $(s,+1)$ and $(s,-1)$.

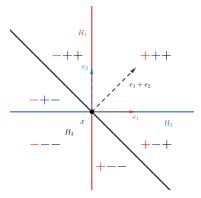
Only a heuristic, but reasonably efficient.

Also, this order change is local - for each s it can change.

Illustration



Black: hyperplanes already treated, x is the current point/region. Dotted and blue: remaining hyperplanes. Here, the blue hyperplanes are "far" from the point, so it's more likely there is only 1 descendant (thus less nodes and a faster algorithm).



++- (and --+) corresponds to an empty region: + means right to H_1 , + over H_2 , - down left H_3 : such a point does not exist. The system is +: $d_1 > 0$, +: $d_2 > 0$, -: $-d_1 - d_2 > 0$

My Personal Recipe

With p > 3, ++-??...?? always infeasible, whatever the remaining signs are.

Idea

can be formalized through a (technical) recipe theorem

before the tree, compute every "infeasible" combination
 linear optimization (≈ black-box) → linear algebra (nice!)
 but requires a lot of linear algebra

With p > 3, ++-??...?? always infeasible, whatever the remaining signs are.

Idea

can be formalized through a (technical) recipe theorem

- before the tree, compute every "infeasible" combination
- linear optimization (\simeq black-box) \rightarrow linear algebra (nice!)
- but requires a lot of linear algebra

With p > 3, ++-??...?? always infeasible, whatever the remaining signs are.

Idea

can be formalized through a (technical) recipe theorem

- before the tree, compute every "infeasible" combination
- linear optimization (\simeq black-box) \rightarrow linear algebra (nice!)
- but requires a lot of linear algebra

With p > 3, ++-??...?? always infeasible, whatever the remaining signs are.

Idea

can be formalized through a (technical) recipe theorem

- before the tree, compute every "infeasible" combination
- linear optimization (\simeq black-box) \rightarrow linear algebra (nice!)
- but requires a lot of linear algebra

- The RC algorithm
- some improvements on the tree structure
- some improvements with duality (the linear algebra)
- best: using a little bit (using it cleverly)

- The RC algorithm
- some improvements on the tree structure
- some improvements with duality (the linear algebra
- best: using a little bit (using it cleverly)

- The RC algorithm
- some improvements on the tree structure
- some improvements with duality (the linear algebra)
- best: using a little bit (using it cleverly)

- The RC algorithm
- some improvements on the tree structure
- some improvements with duality (the linear algebra)
- best : using a little bit (using it cleverly)

Results; blue = times, black = time RC / time variant

Name	RC	ABC		ABCD2		ABCD3		AD4	
R-4-8-2	$1.70 \ 10^{-2}$	$7.20 \ 10^{-3}$	2.36	$6.53 \ 10^{-3}$	2.60	$3.13 \cdot 10^{-3}$	5.43	$8.03 \ 10^{-3}$	2.12
R-7-8-4	5.70 10-2	$3.38 \ 10^{-2}$	1.69	$3.15 \ 10^{-2}$	1.81	2.24 10-2	2.54	$2.79 \ 10^{-2}$	2.04
R-7-9-4	9.97 10-2	$4.98\ 10^{-2}$	2.00	$4.96\ 10^{-2}$	2.01	3.43 10-2	2.91	5.16 10-2	1.93
R-7-10-5	2.33 10-1	$1.16 \ 10^{-1}$	2.01	$1.29 \ 10^{-1}$	1.81	$1.05 \ 10^{-1}$	2.22	$1.22 \ 10^{-1}$	1.91
R-7-11-4	$2.36 \ 10^{-1}$	$1.22 \ 10^{-1}$	1.93	$1.20\ 10^{-1}$	1.97	8.49 10-2	2.78	$1.32 \ 10^{-1}$	1.79
R-7-12-6	9.35 10 ⁻¹	5.05 10 ⁻¹	1.85	5.74 10 ⁻¹	1.63	5.13 10-1	1.82	5.65 10-1	1.65
R-7-13-5	$9.11\ 10^{-1}$	$4.70\ 10^{-1}$	1.94	$5.41 \ 10^{-1}$	1.68	$4.71\ 10^{-1}$	1.93	$5.33 \ 10^{-1}$	1.71
R-7-14-7	3.69	2.15	1.72	2.39	1.54	2.42	1.52	2.42	1.52
R-8-15-7	6.43	3.56	1.81	3.92	1.64	4.30	1.50	4.57	1.41
R-9-16-8	1.51 10 ⁺¹	8.88	1.70	1.03 10 ⁺¹	1.47	1.34 10 ⁺¹	1.13	1.41 10 ⁺¹	1.07
R-10-17-9	3.45 10 ⁺¹	2.08 10+1	1.66	2.50 10 ⁺¹	1.38	4.04 10+1	0.85	3.53 10 ⁺¹	0.98
2d-20-4	3.48 10 ⁻¹	$1.76 \ 10^{-1}$	1.98	8.03 10-2	4.33	6.96 10 ⁻²	5.00	$1.73 \ 10^{-1}$	2.01
2d-20-5	$6.74 \ 10^{-1}$	$3.54 \ 10^{-1}$	1.90	$1.29 \ 10^{-1}$	5.22	$1.32\ 10^{-1}$	5.11	$3.59 \ 10^{-1}$	1.88
2d-20-6	1.19	$6.04 \ 10^{-1}$	1.97	$2.23 \ 10^{-1}$	5.34	$2.70 \ 10^{-1}$	4.41	$6.52 \ 10^{-1}$	1.83
2d-20-7	2.08	1.45	1.43	$5.40 \ 10^{-1}$	3.85	$6.21\ 10^{-1}$	3.35	1.11	1.87
2d-20-8	3.69	1.85	1.99	$6.36 \ 10^{-1}$	5.80	$7.95 \ 10^{-1}$	4.64	1.92	1.92
sR-2	1.71 10+1	4.26	4.01	3.11	5.50	4.14	4.13	1.05 10+1	1.63
sR-4	8.03 10 ⁺¹	3.68 10 ⁺¹	2.18	4.40 10 ⁺¹	1.83	1.41 10 ⁺²	0.57	2.02 10 ⁺²	0.40
sR-6	1.08 10+2	1.54 10+2	0.70	7.01 10+1	1.54	2.58 10 ⁺²	0.42	4.04 10+2	0.27
perm-5	6.64 10 ⁻¹	$1.89 \ 10^{-1}$	3.51	6.87 10-2	9.67	$8.53 \ 10^{-2}$	7.78	3.75 10 ⁻¹	1.77
perm-6	5.80	1.32	4.39	$5.19 \ 10^{-1}$	11.18	1.03	5.63	3.81	1.52
perm-7	5.70 10 ⁺¹	1.10 10 ⁺¹	5.18	4.16	13.70	2.12 10 ⁺¹	2.69	6.37 10 ⁺¹	0.89
perm-8	5.98 10 ⁺²	1.08 10+2	5.54	4.41 10+1	13.56	6.46 10+2	0.93	1.59 10 ⁺³	0.38
r-3-7	5.83 10 ⁻¹	$3.16 \ 10^{-1}$	1.84	$2.79 \ 10^{-1}$	2.09	$2.27 \ 10^{-1}$	2.57	$3.64 \ 10^{-1}$	1.60
r-3-9	$3.31\ 10^{-1}$	$2.92 \ 10^{-1}$	1.13	$1.96\ 10^{-1}$	1.69	$1.41 \ 10^{-1}$	2.35	$1.77 \ 10^{-1}$	1.87
r-4-7	3.13	1.62	1.93	1.37	2.28	2.21	1.42	3.01	1.04
r-4-9	2.76	1.36	2.03	1.13	2.44	1.85	1.49	2.87	0.96
r-5-7	8.92	4.72	1.89	3.94	2.26	8.64	1.03	1.26 10+1	0.71
r-5-9	9.02	4.47	2.02	3.72	2.42	7.92	1.14	1.06 10+1	0.85
r-6-7	2.18 10+1	1.20 10+1	1.82	1.14 10+1	1.91	2.89 10 ⁺¹	0.75	4.03 10+1	0.54
r-6-9	2.63 10 ⁺¹	1.45 10 ⁺¹	1.81	1.17 10 ⁺¹	2.25	3.39 10 ⁺¹	0.78	4.89 10 ⁺¹	0.54
r-7-7	5.72 10+1	3.30 10+1	1.73	3.49 10 ⁺¹	1.64	1.17 10+2	0.49	1.60 10+2	0.36
r-7-9	4.68 10 ⁺¹	2.58 10 ⁺¹	1.81	2.45 10 ⁺¹	1.91	7.30 10 ⁺¹	0.64	8.74 10 ⁺¹	0.54
median/mean			1.93/2.23		2.05/3.70		1.93/2.48		1.52/1.32

- Better improvement ratios on "structured" instances
- "real-world" instances are "structured" (so good ratios!)
- next steps: articles, code details, convincing advisors of why/how it works (, writing the thesis.....)

Thanks for your attention! Some questions?

- Better improvement ratios on "structured" instances
- "real-world" instances are "structured" (so good ratios!)

My Personal Recipe

- Better improvement ratios on "structured" instances
- "real-world" instances are "structured" (so good ratios!)
- next steps: articles, code details, convincing advisors of why/how it works (, writing the thesis.....)

Thanks for your attention! Some questions?

My Personal Recipe

- Better improvement ratios on "structured" instances
- "real-world" instances are "structured" (so good ratios!)
- next steps: articles, code details, convincing advisors of why/how it works (, writing the thesis.....)

Thanks for your attention! Some questions?

Bibliographic elements I

[RČ18] Miroslav Rada and Michal Černý. "A New Algorithm for Enumeration of Cells of Hyperplane Arrangements and a Comparison with Avis and Fukuda's Reverse Search". In: SIAM Journal on Discrete Mathematics 32 (Jan. 2018), pp. 455–473. DOI: 10.1137/15M1027930.

Theoretical detour

Very well-known in algebra / combinatorics... ... but very theoretically: Möbius function, lattices, matroids.

Very impressive results / algorithms for the cardinal (number of feasible systems, number of $J \in \partial_B$) Upper bound, formula (also combinatorial)...

Theoretical detour

My Personal Recipe

Very well-known in algebra / combinatorics... ... but very theoretically: Möbius function, lattices, matroids.

Very impressive results / algorithms for the cardinal (number of feasible systems, number of $J \in \partial_R$)

Upper bound, formula (also combinatorial)...

Method - adding vectors one at a time

With one more vector

• Given (v_1, \ldots, v_{k-1}) ; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$

Method - adding vectors one at a time

With one more vector

- Given $(v_1, ..., v_{k-1})$; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], \ s_i v_i^{\mathsf{T}} d_s^{k-1} > 0$

References

Method - adding vectors one at a time

With one more vector

My Personal Recipe

- Given $(v_1, ..., v_{k-1})$; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], s_i v_i^{\mathsf{T}} d_s^{k-1} > 0$
- $v_k^{\mathsf{T}} d_{\mathsf{s}}^{k-1} > 0 \Rightarrow \left\{ \begin{array}{l} + v_k^{\mathsf{T}} d_{\mathsf{s}}^{k-1} > 0 \\ s_i v_i^{\mathsf{T}} d_{\mathsf{s}}^{k-1} > 0 \end{array} \right. \checkmark, \left\{ \begin{array}{l} v_k^{\mathsf{T}} d > 0 \\ s_i v_i^{\mathsf{T}} d > 0 \end{array} \right. ? \to \mathsf{L.O.}$

References

Method - adding vectors one at a time

With one more vector

My Personal Recipe

- Given $(v_1, ..., v_{k-1})$; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], s_i v_i^{\mathsf{T}} d_s^{k-1} > 0$
- $v_k^\mathsf{T} d_s^{k-1} > 0 \Rightarrow \begin{cases} +v_k^\mathsf{T} d_s^{k-1} > 0 \\ s_i v_i^\mathsf{T} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -v_k^\mathsf{T} d > 0 \\ s_i v_i^\mathsf{T} d > 0 \end{cases} ? \to \mathsf{L.O.}$
- $v_k^{\mathsf{T}} d_s^{k-1} < 0 \Rightarrow \begin{cases} -v_k^{\mathsf{T}} d_s^{k-1} > 0 \\ s_i v_i^{\mathsf{T}} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} +v_k^{\mathsf{T}} d > 0 \\ s_i v_i^{\mathsf{T}} d > 0 \end{cases} ? \to \mathsf{L.O.}$

Method - adding vectors one at a time

With one more vector

My Personal Recipe

- Given (v_1, \ldots, v_{k-1}) ; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], s_i v_i^{\mathsf{T}} d_s^{k-1} > 0$
- $v_k^\mathsf{T} d_s^{k-1} > 0 \Rightarrow \begin{cases} +v_k^\mathsf{T} d_s^{k-1} > 0 \\ s_i v_i^\mathsf{T} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -v_k^\mathsf{T} d > 0 \\ s_i v_i^\mathsf{T} d > 0 \end{cases} ? \to \mathsf{L.O.}$
- $v_k^{\mathsf{T}} d_s^{k-1} < 0 \Rightarrow \begin{cases} -v_k^{\mathsf{T}} d_s^{k-1} > 0 \\ \mathbf{s}_i v_i^{\mathsf{T}} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} +v_k^{\mathsf{T}} d > 0 \\ \mathbf{s}_i v_i^{\mathsf{T}} d > 0 \end{cases} ? \to \mathsf{L.O.}$
- $v_k^{\mathsf{T}} d_s^{k-1} = 0 \Rightarrow \text{ both systems } \checkmark \text{ by perturbation}$

My Personal Recipe

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = \mathbf{1}$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if \geq 2, smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ $\mathcal N$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V,I)) = 1$, $I' \supseteq I$ useless to check

My Personal Recipe

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ ${\mathcal N}$ searches; subsets of size $\le 1 + {
m rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if l s.t. $\dim(\mathcal{N}(V_{-l})) = 1$, $l' \supset l$ useless to check

My Personal Recipe

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_{I}=1$ because

if \geq 2, smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ ${\mathcal N}$ searches; subsets of size $\le 1 + {
m rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V, I)) = 1$, $I' \supset I$ useless to check

My Personal Recipe

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ ${\mathcal N}$ searches; subsets of size $\le 1 + {
m rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V,I)) = 1$, $I' \supset I$ useless to check

My Personal Recipe

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{(:,I)}S_{(I)}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ $\mathcal N$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if l s.t. $\dim(\mathcal{N}(V_{:,l})) = 1$, $l' \supseteq l$ useless to check

My Personal Recipe

We look at subsets
$$I \subset [1:p]$$
, $\dim(\mathcal{N}(V_{:,I})) = 1$
and $\forall I' \subsetneq I$, $\dim(\mathcal{N}(V_{:,I'})) = 0$
$$\dim(\mathcal{N}(V_{:,I})) = 1 \Rightarrow \mathcal{N}(V_{:,I}) = \operatorname{Vect}(\eta)$$
$$\Rightarrow V_{:,I}\eta = 0 \Leftrightarrow \underbrace{V_{:,I}\operatorname{sign}(\eta)}_{V_{:,I}}\underbrace{\operatorname{sign}(\eta)\eta}_{=\gamma_{(I)}\geq 0} = 0$$

 $\mathcal{N}(V_{:,I})$ gives 'unsigned' η 's which define the sign $s_J=1$ because if ≥ 2 , smaller subsets are of $\dim(\mathcal{N})=1$

 2^p LO feasibility $\leftrightarrow 2^p$ $\mathcal N$ searches; subsets of size $\leq 1 + \operatorname{rank}(V)$

Issue (unresolved): "optimal" way to compute efficiently: if I s.t. $\dim(\mathcal{N}(V,I)) = 1$, $I' \supseteq I$ useless to check